Search results
Results from the WOW.Com Content Network
Electric dipole p and its torque τ in a uniform E field. An object with an electric dipole moment p is subject to a torque τ when placed in an external electric field E. The torque tends to align the dipole with the field. A dipole aligned parallel to an electric field has lower potential energy than a dipole making some non-zero angle with it.
Therefore, a molecule's dipole is an electric dipole with an inherent electric field that should not be confused with a magnetic dipole, which generates a magnetic field. The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in the non- SI unit ...
Advanced Placement (AP) Human Geography (also known as AP Human Geo, AP Geography, APHG, AP HuGe, APHug, AP Human, HuGS, AP HuGo, or HGAP) is an Advanced Placement social studies course in human geography for high school, usually freshmen students in the US, culminating in an exam administered by the College Board. [1]
A dipole is characterised by its dipole moment, a vector quantity shown in the figure as the blue arrow labeled M. It is the relationship between the electric field and the dipole moment that gives rise to the behaviour of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure.
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field. Following reference, [ 1 ] consider an electron in an atom with quantum Hamiltonian H 0 {\displaystyle H_{0}} , interacting with a plane electromagnetic wave
Top: The charge is at rest in frame F, so this observer sees a static electric field. An observer in another frame F ′ moves with velocity v relative to F, and sees the charge move with velocity −v with an altered electric field E due to length contraction and a magnetic field B due to the motion of the charge.
Eddy currents are minimized in these devices by selecting magnetic core materials that have low electrical conductivity (e.g., ferrites or iron powder mixed with resin) or by using thin sheets of magnetic material, known as laminations. Electrons cannot cross the insulating gap between the laminations and so are unable to circulate on wide arcs.