enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    If the number of errors within a code word exceeds the error-correcting code's capability, it fails to recover the original code word. Interleaving alleviates this problem by shuffling source symbols across several code words, thereby creating a more uniform distribution of errors. [ 21 ]

  3. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Say the code has codewords, then there are codewords that differ from a codeword by a burst of length . Each of the M {\displaystyle M} words must be distinct, otherwise the code would have distance < 1 {\displaystyle <1} .

  4. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit).

  5. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    Ignoring any lines going out of the picture, there are eight possible six-bit strings corresponding to valid codewords: (i.e., 000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111). This LDPC code fragment represents a three-bit message encoded as six bits. Redundancy is used, here, to increase the chance of recovering from channel ...

  6. Repetition code - Wikipedia

    en.wikipedia.org/wiki/Repetition_code

    Let's say three errors corrupt the transmitted bits and the received sequence is 111 010 100. Decoding is usually done by a simple majority decision for each code word. That lead us to 100 as the decoded information bits, because in the first and second code word occurred less than two errors, so the majority of the bits are correct. But in the ...

  7. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    A Reed–Solomon code (like any MDS code) is able to correct twice as many erasures as errors, and any combination of errors and erasures can be corrected as long as the relation 2E + S ≤ n − k is satisfied, where is the number of errors and is the number of erasures in the block.

  8. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi, [11] [12] as well as for reliable storage in media such as flash memory, hard disk and RAM. [13] Error-correcting codes are usually distinguished between convolutional codes and block codes:

  9. Linear code - Wikipedia

    en.wikipedia.org/wiki/Linear_code

    Linearity guarantees that the minimum Hamming distance d between a codeword c 0 and any of the other codewords c ≠ c 0 is independent of c 0. This follows from the property that the difference c − c 0 of two codewords in C is also a codeword (i.e., an element of the subspace C), and the property that d(c, c 0) = d(c − c 0, 0). These ...