enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  3. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  4. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .

  5. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Other norms defined in terms of or include the weak , space norms (for <), the norm on Lebesgue space (,), and operator norms. Monotone sequences in S {\displaystyle S} that converge to sup S {\displaystyle \sup S} (or to inf S {\displaystyle \inf S} ) can also be used to help prove many of the formula given below, since addition and ...

  6. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An example of such a space is the Fréchet space (), whose definition can be found in the article on spaces of test functions and distributions, because its topology is defined by a countable family of norms but it is not a normable space because there does not exist any norm ‖ ‖ on () such that the topology this norm induces is equal to .

  7. Uniform norm - Wikipedia

    en.wikipedia.org/wiki/Uniform_norm

    For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis , the uniform norm (or sup norm ) assigns, to real- or complex -valued bounded functions ⁠ f {\displaystyle f} ⁠ defined on a set ⁠ S {\displaystyle S} ⁠ , the non-negative number

  8. Mathematical markup language - Wikipedia

    en.wikipedia.org/wiki/Mathematical_markup_language

    A mathematical markup language is a computer notation for representing mathematical formulae, based on mathematical notation. Specialized markup languages are necessary because computers normally deal with linear text and more limited character sets (although increasing support for Unicode is obsoleting very simple uses). A formally ...

  9. Help:Displaying a formula - Wikipedia

    en.wikipedia.org/wiki/Help:Displaying_a_formula

    The code for the math example reads: <math display= "inline" > \sum_{i=0}^\infty 2^{-i} </math> The quotation marks around inline are optional and display=inline is also valid. [2] Technically, the command \textstyle will be added to the user input before the TeX command is passed to the renderer. The result will be displayed without further ...