Search results
Results from the WOW.Com Content Network
Only bonding with 4 equivalent substituents results in exactly sp 3 hybridization. For molecules with different substituents, we can use isovalent hybridization to rationalize the differences in bond angles between different atoms. In the molecule methyl fluoride for example, the HCF bond angle (108.73°) is less than the HCH bond angle (110.2 ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Two methyl groups are the substituents attached to the central oxygen in diethyl ether. Because the two methyl groups are electropositive, greater s character will be observed and the real bond angle is larger than the ideal bond angle of 109.5 o. Methanol has one electropositive methyl substituent and one electronegative hydrogen substituent.
Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group between a carbon atom and an oxygen atom. Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O).
Two molecules (including polyatomic ions) A and B have the same structure if each atom of A can be paired with an atom of B of the same element, in a one-to-one way, so that for every bond in A there is a bond in B, of the same type, between corresponding atoms; and vice versa. [3]
Bicycloalkanes are alkanes containing two rings that are connected to each other by sharing two carbon atoms. Orientation within bicycloalkanes is dependent on the cis or trans orientation of the hydrogen shared by the different rings instead of the methyl groups present in the rings. [7] Tetrodotoxin is one of the world's most potent toxins ...
(Here M is a metal atom, and X and Y are two different types of ligands.) In the cis isomer, the two Y ligands are adjacent to each other at 90°, as is true for the two chlorine atoms shown in green in cis-[Co(NH 3) 4 Cl 2] +, at left. In the trans isomer shown at right, the two Cl atoms are on opposite sides of the central Co atom.
A bicyclic compound can be carbocyclic (all of the ring atoms are carbons), or heterocyclic (the rings' atoms consist of at least two elements), like DABCO. [2] Moreover, the two rings can both be aliphatic (e.g. decalin and norbornane), or can be aromatic (e.g. naphthalene), or a combination of aliphatic and aromatic (e.g. tetralin).