Search results
Results from the WOW.Com Content Network
If data generated by a random vector X are observed as vectors X i of observations with covariance matrix Σ, a linear transformation can be used to decorrelate the data. To do this, the Cholesky decomposition is used to express Σ = A A'. Then the transformed vector Y i = A −1 X i has the identity matrix as its covariance matrix.
To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many modifications and extensions have been made to the SMOTE method ever since its ...
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...
Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. The data may also be collected from sensors in the environment, including traffic cameras, satellites, recording devices, etc.
Meta-analysis is a method of synthesis of quantitative data from multiple independent studies addressing a common research question. An important part of this method involves computing a combined effect size across all of the studies.
Synthetic data is generated to meet specific needs or certain conditions that may not be found in the original, real data. One of the hurdles in applying up-to-date machine learning approaches for complex scientific tasks is the scarcity of labeled data, a gap effectively bridged by the use of synthetic data, which closely replicates real experimental data. [3]
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Data may be collected, presented and summarised, in one of two methods called descriptive statistics. Two elementary summaries of data, singularly called a statistic, are the mean and dispersion. Whereas inferential statistics interprets data from a population sample to induce statements and predictions about a population. [6] [7] [5]