Search results
Results from the WOW.Com Content Network
A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search [1] and optimization, [2] is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [3]
Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [2] In 2005, Wolpert and Macready themselves indicated that the first theorem in their paper "state[s] that any two optimization algorithms are equivalent when their performance is averaged across all possible problems". [3]
Double descent in statistics and machine learning is the phenomenon where a model with a small number of parameters and a model with an extremely large number of parameters both have a small training error, but a model whose number of parameters is about the same as the number of data points used to train the model will have a much greater test ...
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]
Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function . The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of ...
Machine learning algorithms train a model based on a finite set of training data. During this training, the model is evaluated based on how well it predicts the observations contained in the training set.
The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).