Search results
Results from the WOW.Com Content Network
Energy analysts accustomed to the metric "k" ('kilo-') for 1,000 are more likely to use MBtu to represent one million, especially in documents where M represents one million in other energy or cost units, such as MW, MWh and $. [15] The unit 'therm' is used to represent 100,000 Btu. [12] A decatherm is 10 therms or one million Btu.
default conversion combinations SI: ... million British thermal units: MMBtu ... (and never feet) 1.0 cubic foot of natural gas ...
The therm (symbol, thm) is a non-SI unit of heat energy equal to 100,000 British thermal units (BTU), [1] and approximately 105 megajoules, 29.3 kilowatt-hours, 25,200 kilocalories and 25.2 thermies. One therm is the energy content of approximately 100 cubic feet (2.83 cubic metres) of natural gas at standard temperature and pressure. However ...
cubic centimetre of atmosphere; standard cubic centimetre: cc atm; scc ≡ 1 atm × 1 cm 3 = 0.101 325 J: cubic foot of atmosphere; standard cubic foot: cu ft atm; scf ≡ 1 atm × 1 ft 3 = 2.869 204 480 9344 × 10 3 J: cubic foot of natural gas: ≡ 1000 BTU IT = 1.055 055 852 62 × 10 6 J: cubic yard of atmosphere; standard cubic yard: cu yd ...
British thermal unit: Btu Btu 1.0 Btu (1.1 kJ) BTU BTU million British thermal units: MMBtu MMBtu 1.0 MMBtu (1.1 GJ) e6BTU BTU British thermal unit (IT) Btu-IT Btu IT ...
{{convert|123|cuyd|m3+board feet}} → 123 cubic yards (94 m 3; 40,000 board feet) The following converts a pressure to four output units. The precision is 1 (1 decimal place), and units are abbreviated and linked.
For rough comparisons, one million Btu is approximately equal to a thousand cubic feet of natural gas. [8] Pipeline-quality gas has an energy value slightly higher than that of pure methane, which has 10.47 kilowatt-hours per cubic metre (1,012 British thermal units per cubic foot).
= 10 parts per million by volume = 10 ppmv = 10 volumes/10 6 volumes NO x molar mass = 46 kg/kmol = 46 g/mol Flow rate of flue gas = 20 cubic metres per minute = 20 m 3 /min The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure. The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m 3 /kmol.