Search results
Results from the WOW.Com Content Network
An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity There are several mathematical descriptions of plasticity. [ 12 ] One is deformation theory (see e.g. Hooke's law ) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor.
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness ...
In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
In materials science and engineering, the von Mises yield criterion is also formulated in terms of the von Mises stress or equivalent tensile stress, . This is a scalar value of stress that can be computed from the Cauchy stress tensor .
(a) FEM fields of equivalent plastic strain, after spherical indentation to a penetration ratio of about 20%, for as-extruded and annealed copper samples, and (b) corresponding measured and modelled indent profiles. The other main approach is a more cumbersome one, although with much greater potential for obtaining reliable results.
where , are work hardening parameters, and is the initial equivalent plastic strain. The thermal component ( σ t {\displaystyle \sigma _{t}} ) is computed using a bisection algorithm from the following equation.
The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.
The Drucker–Prager yield criterion [1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils. It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.