enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The n th roots of unity form under multiplication a cyclic group of order n, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive n th root of unity. The n th roots of unity form an irreducible representation of any cyclic group of ...

  3. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    The roots of unity modulo n are exactly the integers that are coprime with n. In fact, these integers are roots of unity modulo n by Euler's theorem, and the other integers cannot be roots of unity modulo n, because they are zero divisors modulo n. A primitive root modulo n, is a generator of the group of units of the ring of integers modulo n.

  4. Principal root of unity - Wikipedia

    en.wikipedia.org/wiki/Principal_root_of_unity

    A non-example is in the ring of integers modulo ; while () and thus is a cube root of unity, + + meaning that it is not a principal cube root of unity. The significance of a root of unity being principal is that it is a necessary condition for the theory of the discrete Fourier transform to work out correctly.

  5. Fundamental unit (number theory) - Wikipedia

    en.wikipedia.org/wiki/Fundamental_unit_(number...

    In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic).

  6. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity (/ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is

  7. Chebotarev theorem on roots of unity - Wikipedia

    en.wikipedia.org/wiki/Chebotarev_theorem_on...

    The Chebotarev theorem on roots of unity was originally a conjecture made by Ostrowski in the context of lacunary series.. Chebotarev was the first to prove it, in the 1930s. . This proof involves tools from Galois theory and pleased Ostrowski, who made comments arguing that it "does meet the requirements of mathematical esthetics".

  8. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  9. Cyclotomic field - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_field

    The group of roots of unity in Q(ζ n) has order n or 2n, according to whether n is even or odd. The unit group Z [ζ n ] × is a finitely generated abelian group of rank φ ( n )/2 – 1 , for any n > 2 , by the Dirichlet unit theorem .