enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Complete linkage clustering avoids a drawback of the alternative single linkage method - the so-called chaining phenomenon, where clusters formed via single linkage clustering may be forced together due to single elements being close to each other, even though many of the elements in each cluster may be very distant to each other. Complete ...

  3. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    Implementing a different linkage is simply a matter of using a different formula to calculate inter-cluster distances during the distance matrix update steps of the above algorithm. Complete linkage clustering avoids a drawback of the alternative single linkage clustering method - the so-called chaining phenomenon, where clusters formed via ...

  4. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis refers to a family of algorithms and tasks rather than one ...

  6. Complete linkage - Wikipedia

    en.wikipedia.org/wiki/Complete_linkage

    Hierarchical clustering is a bottom-up approach to cluster analysis, in which the two closest data points are grouped together and are treated as a single data point for later clustering. In complete-linkage Hierarchical Clustering, this process of combining data points into clusters of increasing size is repeated until all date as part of a ...

  7. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    where ,,, and are parameters, which may depend on cluster sizes, that together with the cluster distance function determine the clustering algorithm. Several standard clustering algorithms such as single linkage, complete linkage, and group average method have a recursive formula of the above type. A table of parameters for standard methods is ...

  8. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/.../Automatic_Clustering_Algorithms

    Unlike partitioning and hierarchical methods, density-based clustering algorithms are able to find clusters of any arbitrary shape, not only spheres. The density-based clustering algorithm uses autonomous machine learning that identifies patterns regarding geographical location and distance to a particular number of neighbors.

  9. Category:Cluster analysis algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Cluster_analysis...

    Pages in category "Cluster analysis algorithms" The following 42 pages are in this category, out of 42 total. ... Cobweb (clustering) Complete-linkage clustering;