Search results
Results from the WOW.Com Content Network
The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that
It is, moreover, the smallest number that can be represented as a sum of any number of distinct positive cubes in more than one way. [2] It is a highly powerful number : the product 3 × 3 {\displaystyle 3\times 3} of the exponents in its prime factorization 216 = 2 3 × 3 3 {\displaystyle 216=2^{3}\times 3^{3}} is larger than the product of ...
Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is:
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [ 5 ] expressed as:
A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and no three of these numbers can sum to 4 or 5 modulo 9. [1] It is unknown whether this necessary condition is sufficient.
1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is known as the Ramanujan number or Hardy–Ramanujan number after G. H. Hardy and Srinivasa Ramanujan.
Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is
"The most distinctive mark of quantity is that equality and inequality are predicated of it. Each of the aforesaid quantities is said to be equal or unequal. For instance, one solid is said to be equal or unequal to another; number, too, and time can have these terms applied to them, indeed can all those kinds of quantity that have been mentioned.