enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Saturation (magnetic) - Wikipedia

    en.wikipedia.org/wiki/Saturation_(magnetic)

    Saturation puts a practical limit on the maximum magnetic fields achievable in ferromagnetic-core electromagnets and transformers of around 2 T, which puts a limit on the minimum size of their cores. This is one reason why high power motors, generators, and utility transformers are physically large; to conduct the large amounts of magnetic flux ...

  3. Plasma sheet - Wikipedia

    en.wikipedia.org/wiki/Plasma_sheet

    Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.

  4. Solar phenomena - Wikipedia

    en.wikipedia.org/wiki/Solar_phenomena

    The slow solar wind has a velocity of about 400 kilometres per second (250 mi/s), a temperature of 2 × 10 5 K and a composition that is a close match to the corona. The fast solar wind has a typical velocity of 750 km/s, a temperature of 8 × 10 5 K and nearly matches the photosphere's.

  5. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.

  6. Magnetic reconnection - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reconnection

    Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.

  7. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.

  8. Solar wind - Wikipedia

    en.wikipedia.org/wiki/Solar_wind

    The heliospheric current sheet results from the influence of the Sun's rotating magnetic field on the plasma in the solar wind Over the Sun's lifetime, the interaction of its surface layers with the escaping solar wind has significantly decreased its surface rotation rate. [ 56 ]

  9. Interplanetary magnetic field - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_magnetic_field

    These two magnetic domains are separated by a current sheet (an electric current that is confined to a curved plane). This heliospheric current sheet has a shape similar to a twirled ballerina skirt , and changes in shape through the solar cycle as the Sun's magnetic field reverses about every 11 years.