Search results
Results from the WOW.Com Content Network
Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase, and iron-only (Fe ...
The nif genes are genes encoding enzymes involved in the fixation of atmospheric nitrogen into a form of nitrogen available to living organisms. The primary enzyme encoded by the nif genes is the nitrogenase complex which is in charge of converting atmospheric nitrogen (N 2) to other nitrogen forms such as ammonia which the organism can use for various purposes.
Nitrogenase is thought to have evolved sometime between 1.5-2.2 billion years ago (Ga), [38] [39] although some isotopic support showing nitrogenase evolution as early as around 3.2 Ga. [40] Nitrogenase appears to have evolved from maturase-like proteins, although the function of the preceding protein is currently unknown. [41]
[12] [13] Complete nitrification, the conversion of ammonia to nitrate in a single step known as comammox, has an energy yield (∆G°′) of −349 kJ mol −1 NH 3, while the energy yields for the ammonia-oxidation and nitrite-oxidation steps of the observed two-step reaction are −275 kJ mol −1 NH 3, and −74 kJ mol −1 NO 2 − ...
Nitrogenase is the most important enzyme involved in nitrogen fixation. Azotobacter species have several types of nitrogenase. The basic one is molybdenum-iron nitrogenase. [43] An alternative type contains vanadium; it is independent of molybdenum ions [44] [45] [46] and is more active than
The nitrogenase holoenzyme of A. vinelandii has been characterised by X-ray crystallography in both ADP tetrafluoroaluminate-bound [5] and MgATP-bound [6] states. The enzyme possesses molybdenum iron - sulfido cluster cofactors ( FeMoco ) as active sites , each bearing two pseudocubic iron-sulfido structures.
FeMoco (FeMo cofactor) is the primary cofactor of nitrogenase. Nitrogenase is the enzyme that catalyzes the conversion of atmospheric nitrogen molecules N 2 into ammonia (NH 3) through the process known as nitrogen fixation. Because it contains iron and molybdenum, the cofactor is called FeMoco. Its stoichiometry is Fe 7 MoS 9 C.
EhNifS and EhNifU were found to be necessary and sufficient for Fe-S clusters of non-nitrogenase Fe-S proteins to form under anaerobic conditions. This is the first demonstration of the presence and biological significance of the NIF-like system in eukaryotes. [2] '