Search results
Results from the WOW.Com Content Network
In ordinary English (also natural language) "necessary" and "sufficient" indicate relations between conditions or states of affairs, not statements. For example, being a man is a necessary condition for being a brother, but it is not sufficient—while being a man sibling is a necessary and sufficient condition for being a brother.
The absence these conditions guarantees the outcome cannot occur, and no other condition can overcome the lack of this condition. Further, necessary conditions are not always sufficient. For example, AIDS necessitates HIV, but HIV does not always cause AIDS. In such instances, the condition demonstrates its necessity but lacks sufficiency.
However, only the occurrence of the necessary condition x may not always result in y also occurring. [2] In other words, when some factor is necessary to cause an effect, it is impossible to have the effect without the cause. [3] X would instead be a sufficient cause of y when the occurrence of x implies that y must then occur.
For a polynomial to be Hurwitz, it is necessary but not sufficient that all of its coefficients be positive (except for quadratic polynomials, which also imply sufficiency). A necessary and sufficient condition that a polynomial is Hurwitz is that it passes the Routh–Hurwitz stability criterion. A given polynomial can be efficiently tested to ...
Leibniz test's monotonicity is not a necessary condition, thus the test itself is only sufficient, but not necessary. (The second part of the test is well known necessary condition of convergence for all series.) Examples of nonmonotonic series that converge are:
Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).
Thus, tr AA* = tr BB* is a necessary condition for unitary equivalence, but it is not sufficient. Specht's theorem gives infinitely many necessary conditions which together are also sufficient. The formulation of the theorem uses the following definition. A word in two variables, say x and y, is an expression of the form
Necessary and sufficient condition, in logic, something that is a required condition for something else to be the case; Necessary proposition, in logic, a statement about facts that is either unassailably true (tautology) or obviously false (contradiction) Metaphysical necessity, in philosophy, a truth which is true in all possible worlds