enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one.

  3. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    An example of a model for such a field is the Ising model. A discrete-time stochastic process satisfying the ... But the state space would be of increasing ...

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    A continuous-time Markov chain (X t) t ≥ 0 is defined by a finite or countable state space S, a transition rate matrix Q with dimensions equal to that of the state space and initial probability distribution defined on the state space.

  5. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    According to the figure, a bull week is followed by another bull week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the time. Labeling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this example is

  6. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    A state i is inessential if it is not essential. [2] A state is final if and only if its communicating class is closed. A Markov chain is said to be irreducible if its state space is a single communicating class; in other words, if it is possible to get to any state from any state. [1] [3]: 20

  7. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    Example of a simple MDP with three states (green circles) and two actions (orange circles), with two rewards (orange arrows) A Markov decision process is a 4-tuple (,,,), where: is a set of states called the state space. The state space may be discrete or continuous, like the set of real numbers.

  8. Markov chains on a measurable state space - Wikipedia

    en.wikipedia.org/wiki/Markov_chains_on_a...

    In 1953 the term Markov chain was used for stochastic processes with discrete or continuous index set, living on a countable or finite state space, see Doob. [1] or Chung. [2] Since the late 20th century it became more popular to consider a Markov chain as a stochastic process with discrete index set, living on a measurable state space. [3] [4] [5]

  9. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A stochastic matrix describes a Markov chain X t over a finite state space S with cardinality α.. If the probability of moving from i to j in one time step is Pr(j|i) = P i,j, the stochastic matrix P is given by using P i,j as the i-th row and j-th column element, e.g.,