enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    Recurrent neural networks are recursive artificial neural networks with a certain structure: that of a linear chain. Whereas recursive neural networks operate on any hierarchical structure, combining child representations into parent representations, recurrent neural networks operate on the linear progression of time, combining the previous time step and a hidden representation into the ...

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    In 1993, a neural history compressor system solved a "Very Deep Learning" task that required more than 1000 subsequent layers in an RNN unfolded in time. [ 34 ] Long short-term memory (LSTM) networks were invented by Hochreiter and Schmidhuber in 1995 and set accuracy records in multiple applications domains.

  5. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    BPTT begins by unfolding a recurrent neural network in time. The unfolded network contains k {\displaystyle k} inputs and outputs, but every copy of the network shares the same parameters. Then, the backpropagation algorithm is used to find the gradient of the loss function with respect to all the network parameters.

  6. Teacher forcing - Wikipedia

    en.wikipedia.org/wiki/Teacher_forcing

    It involves feeding observed sequence values (i.e. ground-truth samples) back into the RNN after each step, thus forcing the RNN to stay close to the ground-truth sequence. [ 2 ] The term "teacher forcing" can be motivated by comparing the RNN to a human student taking a multi-part exam where the answer to each part (for example a mathematical ...

  7. Bidirectional associative memory - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_associative...

    The memory or storage capacity of BAM may be given as (,), where "" is the number of units in the X layer and "" is the number of units in the Y layer. [3]The internal matrix has n x p independent degrees of freedom, where n is the dimension of the first vector (6 in this example) and p is the dimension of the second vector (4).

  8. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization . Data normalization (or feature scaling ) includes methods that rescale input data so that the features have the same range, mean, variance, or other ...

  9. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Bidirectional recurrent neural networks (BRNN) connect two hidden layers of opposite directions to the same output. With this form of generative deep learning , the output layer can get information from past (backwards) and future (forward) states simultaneously.