Search results
Results from the WOW.Com Content Network
The hippocampus regulates memory function. Memory improvement is the act of enhancing one's memory. Factors motivating research on improving memory include conditions such as amnesia, age-related memory loss, people’s desire to enhance their memory, and the search to determine factors that impact memory and cognition.
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
Glial cell numbers per neuron increase 12–14% [5] [7] The direct apposition area of glial cells with synapses expands by 19% [21] The volume of glial cell nuclei for each synapse is higher by 37.5% [18] The mean volume of mitochondria per neuron is 20% greater [18] The volume of glial cell nuclei for each neuron is 63% higher [18]
Neuroplasticity is the ability of your brain to make new neural pathways, and change the ones that already exist, in response to changes in your behavior and environment.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
Plasticity in the brain affects the strength of neural connections and pathways. Nonsynaptic plasticity is a form of neuroplasticity that involves modification of ion channel function in the axon, dendrites, and cell body that results in specific changes in the integration of excitatory postsynaptic potentials and inhibitory postsynaptic potentials.
Neuroplasticity is the process by which neurons adapt to a disturbance over time, and most often occurs in response to repeated exposure to stimuli. [27] Aerobic exercise increases the production of neurotrophic factors [note 1] (e.g., BDNF, IGF-1, VEGF) which mediate improvements in cognitive functions and various forms of memory by promoting blood vessel formation in the brain, adult ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!