Search results
Results from the WOW.Com Content Network
A 'window' can be seen between 8 and 14 μm that enables direct transmission of the most intense thermal emissions from Earth's surface. The remaining portion of the upwelling energy, as well as downwelling radiation back to the surface, undergoes absorption and emission by the various atmospheric components as indicated.
Low emissivity (low e or low thermal emissivity) refers to a surface condition that emits low levels of radiant thermal (heat) energy. All materials absorb, reflect, and emit radiant energy according to Planck's law but here, the primary concern is a special wavelength interval of radiant energy, namely thermal radiation of materials. In common ...
Emissions or release parameters such as source location and height, type of source (i.e., fire, pool or vent stack) and exit velocity, exit temperature and mass flow rate or release rate. Terrain elevations at the source location and at the receptor location(s), such as nearby homes, schools, businesses and hospitals.
Next, suppose we have a material that violates Kirchhoff's law when integrated, such that the total coefficient of absorption is not equal to the coefficient of emission at a certain , then if the material at temperature is placed into a Hohlraum at temperature , it would spontaneously emit more than it absorbs, or conversely, thus ...
is the ideality factor, also known as the quality factor, emission coefficient, or the material constant. The equation is called the Shockley ideal diode equation when the ideality factor n {\displaystyle n} equals 1, thus n {\displaystyle n} is sometimes omitted.
where is the breakdown voltage in volts, is the pressure in pascals, is the gap distance in meters, is the secondary-electron-emission coefficient (the number of secondary electrons produced per incident positive ion), is the saturation ionization in the gas at a particular / (electric field/pressure), and is related to the excitation and ...
Emission coefficient is a coefficient in the power output per unit time of an electromagnetic source, a calculated value in physics. The emission coefficient of a gas varies with the wavelength of the light. It has unit m⋅s −3 ⋅sr −1. [18]
Solutions to the equation of radiative transfer form an enormous body of work. The differences however, are essentially due to the various forms for the emission and absorption coefficients. If scattering is ignored, then a general steady state solution in terms of the emission and absorption coefficients may be written: