enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. The monkey and the coconuts - Wikipedia

    en.wikipedia.org/wiki/The_monkey_and_the_coconuts

    If two divisions are done, a multiple of 5 · 5=25 rather than 5 must be used, because 25 can be divided by 5 twice. So the number of coconuts that could be in the pile is k · 25 – 4. k =1 yielding 21 is the smallest positive number that can be successively divided by 5 twice with remainder 1.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".

  4. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .

  5. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    A value is represented as a decimal fraction times a multiple power ... = 8.5 × 10 184; 5 5 5 = 5 ↑↑ 3 = 5 3125 ... power is "approximately" equal to the larger ...

  6. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra , 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents .

  7. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    From that its peripheral circle comes to be equal to thirty thousand yojanas. — "verses: 6.12.40–45, Bhishma Parva of the Mahabharata " In the 3rd century BCE, Archimedes proved the sharp inequalities 223 ⁄ 71 < π < 22 ⁄ 7 , by means of regular 96-gons (accuracies of 2·10 −4 and 4·10 −4 , respectively).

  8. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS ). 1 is sometimes included.

  9. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...