Search results
Results from the WOW.Com Content Network
HDFS: Hadoop's own rack-aware file system. [47] This is designed to scale to tens of petabytes of storage and runs on top of the file systems of the underlying operating systems. Apache Hadoop Ozone: HDFS-compatible object store targeting optimized for billions of small files. FTP file system: This stores all its data on remotely accessible FTP ...
Tables in HBase can serve as the input and output for MapReduce jobs run in Hadoop, and may be accessed through the Java API but also through REST, Avro or Thrift gateway APIs. HBase is a wide-column store and has been widely adopted because of its lineage with Hadoop and HDFS. HBase runs on top of HDFS and is well-suited for fast read and ...
Spark Core is the foundation of the overall project. It provides distributed task dispatching, scheduling, and basic I/O functionalities, exposed through an application programming interface (for Java, Python, Scala, .NET [16] and R) centered on the RDD abstraction (the Java API is available for other JVM languages, but is also usable for some other non-JVM languages that can connect to the ...
Apache Pig [1] is a high-level platform for creating programs that run on Apache Hadoop. The language for this platform is called Pig Latin. [1] Pig can execute its Hadoop jobs in MapReduce, Apache Tez, or Apache Spark. [2]
Apache Hive supports the analysis of large datasets stored in Hadoop's HDFS and compatible file systems such as Amazon S3 filesystem and Alluxio.It provides a SQL-like query language called HiveQL [9] with schema on read and transparently converts queries to MapReduce, Apache Tez [10] and Spark jobs.
TsFile could be written to the HDFS, thereby implementing data processing tasks such as abnormality detection and machine learning on the Hadoop or Spark data processing platform. For the data written to HDFS or local TsFile, users can use TsFile-Hadoop-Connector or TsFile-Spark-Connector to allow Hadoop or Spark to process data.
Hadoop Distributed File System is a distributed file system that handles large data sets running on commodity hardware (Ishengoma, 2013). It is used to scale a single Apache Hadoop cluster to hundreds (and even thousands) of nodes. HDFS is one of the major components of Apache Hadoop, the others being MapReduce and YARN.
Hierarchical Data Format (HDF) is a set of file formats (HDF4, HDF5) designed to store and organize large amounts of data.Originally developed at the U.S. National Center for Supercomputing Applications, it is supported by The HDF Group, a non-profit corporation whose mission is to ensure continued development of HDF5 technologies and the continued accessibility of data stored in HDF.