Search results
Results from the WOW.Com Content Network
The central role of DNA damage and epigenetic defects in DNA repair genes in carcinogenesis. DNA damage is considered to be the primary cause of cancer. [17] More than 60,000 new naturally-occurring instances of DNA damage arise, on average, per human cell, per day, due to endogenous cellular processes (see article DNA damage (naturally occurring)).
The viral gene tax is expressed when the T-cell Leukemia virus transforms a cell altering the expression of cellular growth control genes and causing the transformed cells to become cancerous. HIV works differently by not directly causing cells to become cancerous but by instead making those infected more susceptible to lymphoma and Kaposi's ...
One underlying commonality in cancers is genetic mutation, acquired either by inheritance, or, more commonly, by mutations in one's somatic DNA over time. The mutations considered important in cancers are those that alter protein coding genes (the exome). As Vogelstein et al. point out, a typical tumor contains two to eight exome "driver gene ...
It was suggested that such types of viruses could cause cancer by introducing new genes into the genome. Genetic analysis of mice infected with Friend virus confirmed that retroviral integration could disrupt tumor suppressor genes, causing cancer. [51] Viral oncogenes were subsequently discovered and identified to cause cancer.
Replication errors past these damages (see translesion synthesis) could cause increased mutations and cancer, so that under-expression of RAD51 or BRCA2 would be carcinogenic in itself. Cyan-highlighted genes are in the microhomology-mediated end joining (MMEJ) pathway and are up-regulated in cancer.
Other carcinogens may cause cancer through a variety of mechanisms without producing mutations, such as tumour promotion, immunosuppression that reduces the ability to fight cancer cells or pathogens that can cause cancer, disruption of the endocrine system (e.g. in breast cancer), tissue-specific toxicity, and inflammation (e.g. in colorectal ...
Point mutations classified by impact on protein Selection of disease-causing mutations, in a standard table of the genetic code of amino acids [50] The effect of a mutation on protein sequence depends in part on where in the genome it occurs, especially whether it is in a coding or non-coding region.
It can also be achieved experimentally using laboratory procedures. A mutagen is a mutation-causing agent, be it chemical or physical, which results in an increased rate of mutations in an organism's genetic code. In nature mutagenesis can lead to cancer and various heritable diseases, and it is also a driving force of evolution.