enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    Post's inversion formula for Laplace transforms, named after Emil Post, [3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform. The statement of the formula is as follows: Let f ( t ) {\displaystyle f(t)} be a continuous function on the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} of exponential ...

  3. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  4. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    This theorem is proved by applying the inverse Laplace transform on the convolution theorem in form of the cross-correlation. Let f ( t ) {\displaystyle f(t)} be a function with bilateral Laplace transform F ( s ) {\displaystyle F(s)} in the strip of convergence α < ℜ s < β {\displaystyle \alpha <\Re s<\beta } .

  5. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    An alternative formula for the inverse Laplace transform is given by Post's inversion formula. The limit here is interpreted in the weak-* topology . In practice, it is typically more convenient to decompose a Laplace transform into known transforms of functions obtained from a table and construct the inverse by inspection.

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In other words, the output transform is the pointwise product of the input transform with a third transform (known as a transfer function). See Convolution theorem for a derivation of that property of convolution. Conversely, convolution can be derived as the inverse Fourier transform of the pointwise product of two Fourier transforms.

  7. Deconvolution - Wikipedia

    en.wikipedia.org/wiki/Deconvolution

    In mathematics, deconvolution is the inverse of convolution. Both operations are used in signal processing and image processing. For example, it may be possible to recover the original signal after a filter (convolution) by using a deconvolution method with a certain degree of accuracy. [1]

  8. Integral transform - Wikipedia

    en.wikipedia.org/wiki/Integral_transform

    Employing the inverse transform, i.e., the inverse procedure of the original Laplace transform, one obtains a time-domain solution. In this example, polynomials in the complex frequency domain (typically occurring in the denominator) correspond to power series in the time domain, while axial shifts in the complex frequency domain correspond to ...

  9. Mellin inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Mellin_inversion_theorem

    Then is recoverable via the inverse Mellin transform from its Mellin transform . These results can be obtained by relating the Mellin transform to the Fourier transform by a change of variables and then applying an appropriate version of the Fourier inversion theorem .