enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...

  3. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation. The analysis was performed in R using software made available by Venables and Ripley (2002). The two regression lines appear to be very similar (and this is not unusual in a data set of this size).

  4. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    3. Now transform this vector back to the scale of the actual covariates, using the selected PCA loadings (the eigenvectors corresponding to the selected principal components) to get the final PCR estimator (with dimension equal to the total number of covariates) for estimating the regression coefficients characterizing the original model.

  7. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    3.2 Estimating coefficients. ... Python has the statsmodelsS package which includes many models and functions ... DOI: 10.1007/978-3-319-52452-8 This page was last ...

  8. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Stata, the command newey produces Newey–West standard errors for coefficients estimated by OLS regression. [13] In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [14] In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West.

  9. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), [1] to recognize the contributions of Friedhelm Eicker, [2] Peter J. Huber, [3] and Halbert White. [4]