enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact [3] or second-countable. [2] In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to R n.

  3. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    After a line, a circle is the simplest example of a topological manifold. Topology ignores bending, so a small piece of a circle is treated the same as a small piece of a line. Considering, for instance, the top part of the unit circle, x 2 + y 2 = 1, where the y-coordinate is positive (indicated by the yellow arc in Figure 1).

  4. Brieskorn manifold - Wikipedia

    en.wikipedia.org/wiki/Brieskorn_manifold

    Brieskorn, Egbert V. (1966), "Examples of singular normal complex spaces which are topological manifolds", Proceedings of the National Academy of Sciences of the United States of America, 55 (6): 1395–1397, doi: 10.1073/pnas.55.6.1395, MR 0198497, PMC 224331, PMID 16578636

  5. List of manifolds - Wikipedia

    en.wikipedia.org/wiki/List_of_manifolds

    For more examples see 3-manifold. 4-manifolds ... Spin(7) manifold; Categories of manifolds ... Topological manifold;

  6. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    A topological manifold that is in the image of is said to "admit a differentiable structure", and the fiber over a given topological manifold is "the different differentiable structures on the given topological manifold". Thus given two categories, the two natural questions are:

  7. Topological rigidity - Wikipedia

    en.wikipedia.org/wiki/Topological_rigidity

    Example 1. If closed 2-manifolds M and N are homotopically equivalent then they are homeomorphic. Moreover, any homotopy equivalence of closed surfaces deforms to a homeomorphism. Example 2. If a closed manifold M n (n ≠ 3) is homotopy-equivalent to S n then M n is homeomorphic to S n.

  8. The geometry and topology of three-manifolds - Wikipedia

    en.wikipedia.org/wiki/The_geometry_and_topology...

    The geometry and topology of three-manifolds is a set of widely circulated notes for a graduate course taught at Princeton University by William Thurston from 1978 to 1980 describing his work on 3-manifolds. They were written by Thurston, assisted by students William Floyd and Steven Kerchoff. [1]

  9. Kirby–Siebenmann class - Wikipedia

    en.wikipedia.org/wiki/Kirby–Siebenmann_class

    For a topological manifold M, the Kirby–Siebenmann class (; /) is an element of the fourth cohomology group of M that vanishes if M admits a piecewise linear structure. It is the only such obstruction, which can be phrased as the weak equivalence T O P / P L ∼ K ( Z / 2 , 3 ) {\displaystyle TOP/PL\sim K(\mathbb {Z} /2,3)} of TOP/PL with an ...