Search results
Results from the WOW.Com Content Network
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
The function inorderNext [2]: 60 returns an in-order-neighbor of node, either the in-order-successor (for dir=1) or the in-order-predecessor (for dir=0), and the updated stack, so that the binary search tree may be sequentially in-order-traversed and searched in the given direction dir further on.
A Binary Search Tree is a node-based data structure where each node contains a key and two subtrees, the left and right. For all nodes, the left subtree's key must be less than the node's key, and the right subtree's key must be greater than the node's key. These subtrees must all qualify as binary search trees.
For example, leaf nodes by definition have no descendants, so given only a pointer to a leaf node no other node can be reached. A threaded tree adds extra information in some or all nodes, so that for any given single node the "next" node can be found quickly, allowing tree traversal without recursion and the extra storage (proportional to the ...
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
Array, a sequence of elements of the same type stored contiguously in memory; Record (also called a structure or struct), a collection of fields . Product type (also called a tuple), a record in which the fields are not named