Search results
Results from the WOW.Com Content Network
The n th roots of unity form under multiplication a cyclic group of order n, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive n th root of unity. The n th roots of unity form an irreducible representation of any cyclic group of ...
The roots of unity modulo n are exactly the integers that are coprime with n. In fact, these integers are roots of unity modulo n by Euler's theorem, and the other integers cannot be roots of unity modulo n, because they are zero divisors modulo n. A primitive root modulo n, is a generator of the group of units of the ring of integers modulo n.
It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity (/ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
An nth root of unity is a complex number whose nth power is 1, a root of the polynomial x n − 1. The set of all nth roots of unity forms a cyclic group of order n under multiplication. [1] The generators of this cyclic group are the nth primitive roots of unity; they are the roots of the nth cyclotomic polynomial.
The torsion subgroup of Z[ζ n] × is the group of roots of unity in Q(ζ n), which was described in the previous item. Cyclotomic units form an explicit finite-index subgroup of Z[ζ n] ×. The Kronecker–Weber theorem states that every finite abelian extension of Q in C is contained in Q(ζ n) for some n.
Let =. Then ζ q is a root of the equation x q − 1 = 0.Each of its powers, ,, …,, = = is also a root. Therefore, since there are q of them, they are all of the roots. The numbers where 1 ≤ n ≤ q are called the q-th roots of unity.
A non-example is in the ring of integers modulo ; while () and thus is a cube root of unity, + + meaning that it is not a principal cube root of unity. The significance of a root of unity being principal is that it is a necessary condition for the theory of the discrete Fourier transform to work out correctly.