Search results
Results from the WOW.Com Content Network
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
Implicit function theorem (vector calculus) Impossibility of angle trisection ; Increment theorem (mathematical analysis) Independence of the axiom of choice (mathematical logic) Independence of the continuum hypothesis (mathematical logic) Independence of the parallel postulate ; Infinite monkey theorem (probability)
Compactness theorem (very compact proof) ErdÅ‘s–Ko–Rado theorem; Euler's formula; Euler's four-square identity; Euler's theorem; Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second ...
Implicit function theorem; Increment theorem; Integral of inverse functions; Integration by parts; Integration using Euler's formula; Intermediate value theorem; Inverse function rule; Inverse function theorem
An implicit function is a function that is defined implicitly by an implicit equation, by associating one of the variables (the value) with the others (the arguments). [ 56 ] : 204–206 Thus, an implicit function for y {\displaystyle y} in the context of the unit circle is defined implicitly by x 2 + f ( x ) 2 − 1 = 0 {\displaystyle x^{2}+f ...
The implicit function theorem describes conditions under which an equation (,) = can be solved implicitly for x and/or y – that is, under which one can validly write = or = (). This theorem is the key for the computation of essential geometric features of the curve: tangents , normals , and curvature .
An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z . The graph of a function is usually described by an equation z = f ( x , y ) {\displaystyle z=f(x,y)} and is called an explicit representation.