enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear quantile regression models a particular conditional quantile, for example the conditional median, as a linear function β T x of the predictors. Mixed models are widely used to analyze linear regression relationships involving dependent data when the dependencies have a known structure.

  3. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Main loop: while R ≠ ∅ and max(w R) > ε: Let j in R be the index of max(w R) in w. Add j to P. Remove j from R. Let A P be A restricted to the variables included in P. Let s be vector of same length as x. Let s P denote the sub-vector with indexes from P, and let s R denote the sub-vector with indexes from R. Set s P = ((A P) T A P) −1 ...

  4. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    Examples of discriminative models include: Logistic regression, a type of generalized linear regression used for predicting binary or categorical outputs (also known as maximum entropy classifiers) Boosting (meta-algorithm) Conditional random fields; Linear regression; Random forests

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  6. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  7. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  8. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. [1] Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates.

  9. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...