enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Utricle (ear) - Wikipedia

    en.wikipedia.org/wiki/Utricle_(ear)

    The utricle and saccule are part of the balancing system (membranous labyrinth) in the vestibule of the bony labyrinth (small oval chamber). [1] They use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation. The utricle detects linear accelerations and head-tilts in the horizontal plane.

  3. Saccule - Wikipedia

    en.wikipedia.org/wiki/Saccule

    The saccule, like the utricle, provides information to the brain about head position when it is not moving. [1] The structures that enable the saccule to gather this vestibular information are the hair cells. The 2 by 3 mm patch of hair cells and supporting cells are called a macula.

  4. Otolithic membrane - Wikipedia

    en.wikipedia.org/wiki/Otolithic_membrane

    Overlying the hair cells and their hair bundles is a gelatinous layer and above that layer is the otolithic membrane. [1] The utricle serves to measure horizontal accelerations and the saccule responds to vertical accelerations. The reason for this difference is the orientation of the macula in the two organs. The utricular macula lie ...

  5. Vestibular system - Wikipedia

    en.wikipedia.org/wiki/Vestibular_system

    Humans have two otolithic organs on each side, one called the utricle, the other called the saccule. The utricle contains a patch of hair cells and supporting cells called a macula. Similarly, the saccule contains a patch of hair cells and a macula. Each hair cell of a macula has forty to seventy stereocilia and one true cilium called a ...

  6. Vestibular nerve - Wikipedia

    en.wikipedia.org/wiki/Vestibular_nerve

    The vestibular nerve is one of the two branches of the vestibulocochlear nerve (the cochlear nerve being the other). In humans the vestibular nerve transmits sensory information from vestibular hair cells located in the two otolith organs (the utricle and the saccule) and the three semicircular canals via the vestibular ganglion of Scarpa.

  7. Hair cell - Wikipedia

    en.wikipedia.org/wiki/Hair_cell

    In mammalian outer hair cells, the varying receptor potential is converted to active vibrations of the cell body. This mechanical response to electrical signals is termed somatic electromotility; [13] it drives variations in the cell's length, synchronized to the incoming sound signal, and provides mechanical amplification by feedback to the traveling wave.

  8. Inner ear - Wikipedia

    en.wikipedia.org/wiki/Inner_ear

    Various clusters of hair cells within the inner ear may instead be responsible; for example, bony fish contain a sensory cluster called the macula neglecta in the utricle that may have this function. Although fish have neither an outer nor a middle ear, sound may still be transmitted to the inner ear through the bones of the skull, or by the ...

  9. Otolith - Wikipedia

    en.wikipedia.org/wiki/Otolith

    Hair cells send signals down sensory nerve fibers which are interpreted by the brain as motion. In addition to sensing acceleration of the head, the otoliths can help to sense the orientation via gravity's effect on them. When the head is in a normal upright position, the otolith presses on the sensory hair cell receptors. This pushes the hair ...