Search results
Results from the WOW.Com Content Network
Hierarchy of mathematical spaces. Normed vector spaces are a superset of inner product spaces and a subset of metric spaces, which in turn is a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]
In mathematics, Dvoretzky's theorem is an important structural theorem about normed vector spaces proved by Aryeh Dvoretzky in the early 1960s, [1] answering a question of Alexander Grothendieck. In essence, it says that every sufficiently high-dimensional normed vector space will have low-dimensional subspaces that are approximately Euclidean .
When a vector space over a field F has a finite generating set, then one may extract from it a basis consisting of a finite number n of vectors, and the space is therefore isomorphic to F n. The corresponding statement with F generalized to a principal ideal domain R is no longer true, since a basis for a finitely generated module over R might ...
In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm.
Banach lattices are extremely common in functional analysis, and "every known example [in 1948] of a Banach space [was] also a vector lattice." [1] In particular: ℝ, together with its absolute value as a norm, is a Banach lattice.
This is a list of vector spaces in abstract mathematics, by Wikipedia page. Banach space; Besov space; Bochner space; Dual space; Euclidean space; Fock space; Fréchet space; Hardy space; Hilbert space; Hölder space; LF-space; L p space; Minkowski space; Montel space; Morrey–Campanato space; Orlicz space; Riesz space; Schwartz space; Sobolev ...
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Normed vector space; C. C space; Cocompact embedding; F.
In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at ...