Search results
Results from the WOW.Com Content Network
The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups. The ordinary exponential function of mathematical analysis is a special case of the exponential map when G {\displaystyle G} is the multiplicative group of positive real numbers (whose Lie algebra is the additive group ...
If is a Lie group with Lie algebra , then we have the exponential map from to , written as X ↦ e X , X ∈ g . {\displaystyle X\mapsto e^{X},\quad X\in {\mathfrak {g}}.} If G {\displaystyle G} is a matrix Lie group, the expression e X {\displaystyle e^{X}} can be computed by the usual power series for the exponential.
The definition above is easy to use, but it is not defined for Lie groups that are not matrix groups, and it is not clear that the exponential map of a Lie group does not depend on its representation as a matrix group. We can solve both problems using a more abstract definition of the exponential map that works for all Lie groups, as follows.
Note that a "complex Lie group" is defined as a complex analytic manifold that is also a group whose multiplication and inversion are each given by a holomorphic map. The dimensions in the table below are dimensions over C. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.
Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4; Kac, Victor (1990). Infinite dimensional Lie algebras (3rd ed.). Cambridge University Press. ISBN 0-521-46693-8. Claudio Procesi (2007) Lie Groups: an approach through invariants and representation, Springer, ISBN ...
The definition of a Lie algebra can be reformulated more abstractly in the language of category theory. Namely, one can define a Lie algebra in terms of linear maps—that is, morphisms in the category of vector spaces—without considering individual elements. (In this section, the field over which the algebra is defined is assumed to be of ...
Dually, a Lie coalgebra structure on a vector space E is a linear map : which is antisymmetric (this means that it satisfies =, where is the canonical flip ) and satisfies the so-called cocycle condition (also known as the co-Leibniz rule)
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .