enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxaloacetic acid - Wikipedia

    en.wikipedia.org/wiki/Oxaloacetic_acid

    Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO 2 CC(O)CH 2 CO 2 H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals.

  3. Ketogenesis - Wikipedia

    en.wikipedia.org/wiki/Ketogenesis

    Depletion of glucose and oxaloacetate can be triggered by fasting, vigorous exercise, high-fat diets or other medical conditions, all of which enhance ketone production. [12] Deaminated amino acids that are ketogenic, such as leucine, also feed TCA cycle, forming acetoacetate & ACoA and thereby produce ketones. [1]

  4. Ketone bodies - Wikipedia

    en.wikipedia.org/wiki/Ketone_bodies

    Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.

  5. Fatty acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_metabolism

    The ketones are released by the liver into the blood. All cells with mitochondria can take up ketones from the blood and reconvert them into acetyl-CoA, which can then be used as fuel in their citric acid cycles, as no other tissue can divert its oxaloacetate into the gluconeogenic pathway in the way that this can occur in the liver.

  6. Urea cycle - Wikipedia

    en.wikipedia.org/wiki/Urea_cycle

    This malate is then oxidized to oxaloacetate by cytosolic malate dehydrogenase, generating a reduced NADH in the cytosol. Oxaloacetate is one of the keto acids preferred by transaminases, and so will be recycled to aspartate, maintaining the flow of nitrogen into the urea cycle. We can summarize this by combining the reactions:

  7. Acetyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acetyl-CoA

    The ketone bodies are released by the liver into the blood. All cells with mitochondria can take ketone bodies up from the blood and reconvert them into acetyl-CoA, which can then be used as fuel in their citric acid cycles, as no other tissue can divert its oxaloacetate into the gluconeogenic pathway in the way that the

  8. Glyoxylate cycle - Wikipedia

    en.wikipedia.org/wiki/Glyoxylate_cycle

    Both malate and oxaloacetate can be converted into phosphoenolpyruvate, which is the product of phosphoenolpyruvate carboxykinase, the first enzyme in gluconeogenesis. The net result of the glyoxylate cycle is therefore the production of glucose from fatty acids.

  9. Glucogenic amino acid - Wikipedia

    en.wikipedia.org/wiki/Glucogenic_amino_acid

    Following this, pyruvate is transformed into oxaloacetate, a crucial step in the gluconeogenesis process. [4] It is possible to synthesize glucose from oxaloacetate, ensuring that the blood glucose levels required for the body to produce energy are maintained. In humans, the glucogenic amino acids are: Alanine; Arginine; Asparagine; Aspartic ...