enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  3. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  4. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;

  5. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  6. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If the quadratic form f yields only non-negative values (positive or zero), the symmetric matrix is called positive-semidefinite (or if only non-positive values, then negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and ...

  8. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  9. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.