enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pulse-Doppler radar - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_radar

    Pulse-Doppler systems measure the range to objects by measuring the elapsed time between sending a pulse of radio energy and receiving a reflection of the object. Radio waves travel at the speed of light , so the distance to the object is the elapsed time multiplied by the speed of light, divided by two – there and back.

  3. Range ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Range_ambiguity_resolution

    Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .

  4. Pulse-Doppler signal processing - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_signal...

    Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common.

  5. Doppler radar - Wikipedia

    en.wikipedia.org/wiki/Doppler_radar

    Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]

  6. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  7. Radar - Wikipedia

    en.wikipedia.org/wiki/Radar

    Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

  8. Radar engineering - Wikipedia

    en.wikipedia.org/wiki/Radar_engineering

    The range and velocity of a target are detected through pulse delay ranging and the Doppler effect (pulse-Doppler), or through the frequency modulation (FM) ranging and range differentiation. The range resolution is limited by the instantaneous signal bandwidth of the radar sensor in both pulse-Doppler and frequency modulated continuous wave ...

  9. Imaging radar - Wikipedia

    en.wikipedia.org/wiki/Imaging_radar

    SARs produce a two-dimensional (2-D) image. One dimension in the image is called range and is a measure of the "line-of-sight" distance from the radar to the object. Range is determined by measuring the time from transmission of a pulse to receiving the echo from a target. Also, range resolution is determined by the transmitted pulse width.