Search results
Results from the WOW.Com Content Network
C4 plants use a different metabolic pathway to capture carbon dioxide but also have differences in leaf anatomy and cell biology compared to most other plants. Trunk, a single woody stem came about in unrelated plants: paleozoic tree forms of club mosses, horsetails, and seed plants.
Comparative anatomy studies similarities and differences in organisms. The image shows homologous bones in the upper limb of various vertebrates. Comparative anatomy is the study of similarities and differences in the anatomy of different species. It is closely related to evolutionary biology and phylogeny [1] (the evolution of species).
Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups.
An evolutionary tree (of Amniota, for example, the last common ancestor of mammals and reptiles, and all its descendants) illustrates the initial conditions causing evolutionary patterns of similarity (e.g., all Amniotes produce an egg that possesses the amnios) and the patterns of divergence amongst lineages (e.g., mammals and reptiles ...
The tetrapods, including all large- and medium-sized land animals, have been among the best understood animals since earliest times. By Aristotle's time, the basic division between mammals, birds and egg-laying tetrapods (the "herptiles") was well known, and the inclusion of the legless snakes into this group was likewise recognized. [28]
Phylogenetic comparative methods (PCMs) use information on the historical relationships of lineages (phylogenies) to test evolutionary hypotheses.The comparative method has a long history in evolutionary biology; indeed, Charles Darwin used differences and similarities between species as a major source of evidence in The Origin of Species.
The term "homology" was first used in biology by the anatomist Richard Owen in 1843 when studying the similarities of vertebrate fins and limbs, defining it as the "same organ in different animals under every variety of form and function", [6] and contrasting it with the matching term "analogy" which he used to describe different structures ...
Between these folds is a shallow median groove, the neural groove. The groove gradually deepens as the neural folds become elevated, and ultimately the folds meet and coalesce in the middle line and convert the groove into a closed tube, the neural tube or canal, the ectodermal wall of which forms the rudiment of the nervous system.