Search results
Results from the WOW.Com Content Network
SDBS includes 14700 1 H NMR spectra and 13000 13 C NMR spectra as well as FT-IR, Raman, ESR, and MS data. The data are stored and displayed as an image of the processed data. Annotation is achieved by a list of the chemical shifts correlated to letters which are also used to label a molecular line drawing.
If a spectrum of an unknown chemical compound is available, a reverse search can be carried out by entering the values of the chemical shift, frequency or mass of the peaks in the NMR, FT-IR or EI-MS spectrum respectively. This type of search affords all the chemical compounds in the database that have the entered spectral characteristics. [6]
Organic Compounds National Institute of Advanced Industrial Science and Technology (AIST), Japan Organic compounds Spectra:IR Raman MASS ESR 1 H NMR 13 C NMR SDBS No curated "SDBS". 34,000 Serum Metabolome Database: The Metabolomics Innovation Centre: found in blood serum "Serum Metabolome DB". 4,651 Solvent Selection Tool ACS Green Chemistry ...
A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.
Nuclear magnetic resonance spectroscopy of stereoisomers most commonly known as NMR spectroscopy of stereoisomers is a chemical analysis method that uses NMR spectroscopy to determine the absolute configuration of stereoisomers. For example, the cis or trans alkenes, R or S enantiomers, and R,R or R,S diastereomers. [1] [2]
Paramagnetism diminishes the resolution of an NMR spectrum to the extent that coupling is rarely resolved. Nonetheless spectra of paramagnetic compounds provide insight into the bonding and structure of the sample. For example, the broadening of signals is compensated in part by the wide chemical shift range (often 200 ppm in 1 H NMR).
This occurs most frequently in compounds that contain phosphorus or fluorine, as they are both spin-1/2 nuclei of 100% abundance. For example, the 1H signals for the protons in fluoromethane are split into a doublet by the fluorine atom; conversely, the fluorine-19 NMR spectrum of this compound shows a quartet due to being split by the three ...
Phosphorus is commonly found in organic compounds and coordination complexes (as phosphines), making it useful to measure 31 - NMR spectra routinely. Solution 31 P-NMR is one of the more routine NMR techniques because 31 P has an isotopic abundance of 100% and a relatively high gyromagnetic ratio. The 31 P nucleus also has a spin of 1 / 2 ...