Search results
Results from the WOW.Com Content Network
To produce the next count value in a Gray-code counter, it is necessary to have some combinational logic that will increment the current count value that is stored. One way to increment a Gray code number is to convert it into ordinary binary code, [55] add one to it with a standard binary adder, and then convert the result back to Gray code. [56]
Here are grouped those full RGB hardware palettes that have the same number of binary levels (i.e., the same number of bits) for every red, green and blue components using the full RGB color model. Thus, the total number of colors are always the number of possible levels by component, n, raised to a power of 3: n×n×n = n 3.
The simplest form of quantization is to simply assign 3 bits to red, 3 bits to green and 2 bits to blue, as the human eye is less sensitive to blue light. This creates a so called 3-3-2 8-bit color image, arranged like on the following table: Bit 7 6 5 4 3 2 1 0 Data R R R G G G B B. This process is sub optimal.
The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...
Gillham code is a zero-padded 12-bit binary code using a parallel nine-[1] to eleven-wire interface, [2] the Gillham interface, that is used to transmit uncorrected barometric altitude between an encoding altimeter or analog air data computer and a digital transponder.
The following table represents decimal digits from 0 to 9 in various BCD encoding systems. In the headers, the "8 4 2 1" indicates the weight of each bit. In the fifth column ("BCD 8 4 −2 −1"), two of the weights are negative. Both ASCII and EBCDIC character codes for the digits, which are examples of zoned BCD, are also shown.
A BIOS Color Attribute is an 8 bit value where the low 4 bits represent the character color and the high 4 bits represent the background color.The name comes from the fact that these colors are used in BIOS interrupts, specifically INT 10h, the video interrupt.
The Aiken code (also known as 2421 code) [1] [2] is a complementary binary-coded decimal (BCD) code. A group of four bits is assigned to the decimal digits from 0 to 9 according to the following table. The code was developed by Howard Hathaway Aiken and is still used today in digital clocks, pocket calculators and similar devices [citation needed].