enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...

  3. Negative base - Wikipedia

    en.wikipedia.org/wiki/Negative_base

    The common names for negative-base positional numeral systems are formed by prefixing nega-to the name of the corresponding positive-base system; for example, negadecimal (base −10) corresponds to decimal (base 10), negabinary (base −2) to binary (base 2), negaternary (base −3) to ternary (base 3), and negaquaternary (base −4) to ...

  4. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    If a instead is one, the variable base (containing the value b 2 i mod m of the original base) is simply multiplied in. In this example, the base b is raised to the exponent e = 13. The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1.

  5. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    The most common variants are decimal (base 10) and binary (base 2). The latter is commonly known also as binary scaling. Thus, if n fraction digits are stored, the value will always be an integer multiple of b −n. Fixed-point representation can also be used to omit the low-order digits of integer values, e.g. when representing large dollar ...

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be represented exactly using a decimal base (0.2, or 2 × 10 −1).

  7. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Thus, only 10 bits of the significand appear in the memory format but the total precision is 11 bits. In IEEE 754 parlance, there are 10 bits of significand, but there are 11 bits of significand precision (log 10 (2 11) ≈ 3.311 decimal digits, or 4 digits ± slightly less than 5 units in the last place).

  8. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    The diagram above shows the binary representation of 243 10 in the original register, and the BCD representation of 243 on the left. The scratch space is initialized to all zeros, and then the value to be converted is copied into the "original register" space on the right.

  9. Change of base - Wikipedia

    en.wikipedia.org/wiki/Change_of_base

    In mathematics, change of base can mean any of several things: Changing numeral bases , such as converting from base 2 ( binary ) to base 10 ( decimal ). This is known as base conversion .