enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solar constant - Wikipedia

    en.wikipedia.org/wiki/Solar_constant

    Solar irradiance spectrum at top of atmosphere, on a linear scale and plotted against wavenumber. The solar constant (G SC) measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation (total solar irradiance) per unit

  3. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    Total solar irradiance (TSI) is a measure of the solar power over all wavelengths per unit area incident on the Earth's upper atmosphere. It is measured facing (pointing at / parallel to) the incoming sunlight (i.e. the flux through a surface perpendicular to the incoming sunlight; other angles would not be TSI and be reduced by the dot product ...

  4. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure on objects near the Earth may be calculated using the Sun's irradiance at 1 AU, known as the solar constant, or G SC, whose value is set at 1361 W/m 2 as of 2011. [17] All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation.

  5. Air mass (solar energy) - Wikipedia

    en.wikipedia.org/wiki/Air_mass_(solar_energy)

    For example, when the sun is more than about 60° above the horizon (<30°) the solar intensity is about 1000 W/m 2 (from equation I.1 as shown in the above table), whereas when the sun is only 15° above the horizon (=75°) the solar intensity is still about 600 W/m 2 or 60% of its maximum level; and at only 5° above the horizon still 27% of ...

  6. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    For the flux density received from a remote unresolvable "point source", the measuring instrument, usually telescopic, though not able to resolve any detail of the source itself, must be able to optically resolve enough details of the sky around the point source, so as to record radiation coming from it only, uncontaminated by radiation from other sources.

  7. Planetary equilibrium temperature - Wikipedia

    en.wikipedia.org/wiki/Planetary_equilibrium...

    where represents the area- and time-averaged incident solar flux, and may be expressed as: F s o l a r = I o / 4 {\displaystyle F_{\rm {solar}}=I_{o}/4} The factor of 1/4 in the above formula comes from the fact that only a single hemisphere is lit at any moment in time (creates a factor of 1/2), and from integrating over angles of incident ...

  8. Irradiance - Wikipedia

    en.wikipedia.org/wiki/Irradiance

    Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅nm −1. This is a ...

  9. Energy flux - Wikipedia

    en.wikipedia.org/wiki/Energy_flux

    Energy flux is the rate of transfer of energy through a surface. The quantity is defined in two different ways, depending on the context: Total rate of energy transfer (not per unit area); [1] SI units: W = J⋅s −1. Specific rate of energy transfer (total normalized per unit area); [2] SI units: W⋅m −2 = J⋅m −2 ⋅s −1: