enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability measure - Wikipedia

    en.wikipedia.org/wiki/Probability_measure

    In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies measure properties such as countable additivity. [1] The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume ) is that a probability measure must ...

  3. Failure rate - Wikipedia

    en.wikipedia.org/wiki/Failure_rate

    Failure rate is the frequency with which any system or component fails, expressed in failures per unit of time. It thus depends on the system conditions, time interval, and total number of systems under study. [1]

  4. Frequency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Frequency_(statistics)

    The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. [1]: 17–19 The relative frequency (or empirical probability) of an event is the absolute frequency normalized by the total number of events:

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.

  6. Mean time between failures - Wikipedia

    en.wikipedia.org/wiki/Mean_time_between_failures

    The difference ("down time" minus "up time") is the amount of time it was operating between these two events. By referring to the figure above, the MTBF of a component is the sum of the lengths of the operational periods divided by the number of observed failures:

  7. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration.

  8. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  9. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).