Search results
Results from the WOW.Com Content Network
The reaction relies on the interaction between glyoxylic acid and the indole ring of the amino acid tryptophan, a structural feature found in most proteins. When proteins are exposed to concentrated sulfuric acid and glyoxylic acid, the indole group undergoes a reaction that produces a highly colored compound.
The structure of glyoxylic acid is shown as having an aldehyde functional group. The aldehyde is only a minor component of the form most prevalent in some situations. Instead, glyoxylic acid often exists as a hydrate or a cyclic dimer. For example, in the presence of water, the carbonyl rapidly converts to a geminal diol (described as the ...
The Hopkins-Cole reaction, also known as the glyoxylic acid reaction, is a chemical test used for detecting the presence of tryptophan in proteins. [1] A protein solution is mixed with Hopkins Cole reagent, which consists of glyoxylic acid. Concentrated sulfuric acid is slowly added to form two layers. A purple ring appears between the two ...
Glyoxylate and dicarboxylate metabolism describes a variety of reactions involving glyoxylate or dicarboxylates.Glyoxylate is the conjugate base of glyoxylic acid, and within a buffered environment of known pH such as the cell cytoplasm these terms can be used almost interchangeably, as the gain or loss of a hydrogen ion is all that distinguishes them, and this can occur in the aqueous ...
This acetate, bound to the active thiol group of coenzyme A, enters the citric acid cycle (TCA cycle) where it is fully oxidized to carbon dioxide. This pathway thus allows cells to obtain energy from fat. To use acetate from fat for biosynthesis of carbohydrates, the glyoxylate cycle, whose initial reactions are identical to the TCA cycle, is ...
It is a spontaneous reaction and a type of post-translational modification of proteins meaning it alters their structure and biological activity. It is the covalent attachment between the carbonil group of a reducing sugar (mainly glucose and fructose) and the amino acid side chain of the protein. In this process the intervention of an enzyme ...
Glyoxylate reductase uses NAD(P)H to reduce an oxoacid (glyoxylate) to its corresponding α-hydroxy acid (glycolate). This class of reactions provides an opportunity for the synthesis of chiral hydroxy acids. Such products are of interest in the synthesis of pharmaceuticals, such as anti-obesity compounds and semisynthetic penicillins. [13]
The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone (also known as an azlactone). [1] [2] Azlactone chemistry: step 2 is a Perkin variation