Search results
Results from the WOW.Com Content Network
All multi-driver speakers (unless they are coaxial) are difficult to measure correctly if the measuring microphone is placed close to the loudspeaker and slightly above or below the optimum axis because the different path length from two drivers producing the same frequency leads to phase cancellation. It is useful to remember that, as a rule ...
The measure of the low frequency (many tens of Hz) noise contributed by the turntable of an analogue playback system. It is caused by imperfect bearings, uneven motor windings, vibrations in driving bands in some turntables, room vibrations (e.g., from traffic) that is transmitted by the turntable mounting and so to the phono cartridge.
Dynamic range is a measure of how small you can measure a signal relative to the maximum input signal the device can measure. Expressed in decibels, the dynamic range is 20 log (Vmax/Vmin). For example, a device with an input range of ±10 V and a dynamic range of 110 dB will be able to measure a signal as small as 10 μV.
Required for measuring the acoustics in buildings is a signal generator that provides pink or white noise through an amplifier and omnidirectional speakers. In fact, the omnidirectional speaker, or sound source, should provide an equal dispersion of sound throughout the room. To achieve accurate measurements, sound should radiate evenly.
If the performance of speaker system is critical, as with high order (complex) or heavily equalized systems, it is sensible to measure T/S parameters after a period of run-in (some hours, typically, using program material), and to model the effects of normal parameter changes on driver performance.
The sound waves are generated by a sound source, such as the vibrating diaphragm of a stereo speaker. The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound, thus forming the sound wave.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area, also called the sound power density and the sound energy flux density. [2]