Search results
Results from the WOW.Com Content Network
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially. If k is less than 1, the chain reaction is subcritical, and the ...
If k = 1, the chain reaction is critical and the neutron population will remain constant. In an infinite medium, neutrons cannot leak out of the system and the multiplication factor becomes the infinite multiplication factor, k = k ∞ {\displaystyle k=k_{\infty }} , which is approximated by the four-factor formula.
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes (e.g., uranium-235 ...
Reactions with neutrons are important in nuclear reactors and nuclear weapons. While the best-known neutron reactions are neutron scattering , neutron capture , and nuclear fission , for some light nuclei (especially odd-odd nuclei ) the most probable reaction with a thermal neutron is a transfer reaction:
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
Within a nuclear fission reactor, the neutron flux is the primary quantity measured to control the reaction inside. The flux shape is the term applied to the density or relative strength of the flux as it moves around the reactor. Typically the strongest neutron flux occurs in the middle of the reactor core, becoming lower toward the edges.
Each nuclear fission produces several neutrons that can be absorbed, escape from the reactor, or go on to cause more fissions in a nuclear chain reaction.When an average of one neutron from each fission goes on to cause another fission, the reactor is "critical", and the chain reaction proceeds at a constant power level.