Search results
Results from the WOW.Com Content Network
In molecular biology, substrate presentation is a biological process that activates a protein. The protein is sequestered away from its substrate and then activated by release and exposure to its substrate. [1] [2] A substrate is typically the substance on which an enzyme acts but can also be a protein surface to which a ligand binds. In the ...
In biology, a substrate is the surface on which an organism (such as a plant, fungus, or animal) lives.A substrate can include biotic or abiotic materials and animals. For example, encrusting algae that lives on a rock (its substrate) can be itself a substrate for an animal that lives on top of the algae.
This theory is a little similar to the Lock and Key Theory, but at this time the active site is preprogrammed to bind perfectly to substrate in transition state rather than in ground state. The formation of transition state within the solution requires a large amount of energy to relocate solvent molecules and the reaction is slowed.
This is the gene described in The Selfish Gene. [9] More thorough discussions of this version of a gene can be found in the articles Genetics and Gene-centered view of evolution. The molecular gene definition is more commonly used across biochemistry, molecular biology, and most of genetics—the gene that is described in terms of DNA sequence. [1]
Binding site in blue, inhibitor in green, and substrate in black. In the scope of cancer, ligands that are edited to have a similar appearance to the natural ligand are used to inhibit tumor growth. For example, Methotrexate, a chemotherapeutic, acts as a competitive inhibitor at the dihydrofolate reductase active site. [40]
Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. [ 1 ] [ 2 ] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
Absolute specificity can be thought of as being exclusive, in which an enzyme acts upon one specific substrate. [8] Absolute specific enzymes will only catalyze one reaction with its specific substrate. For example, lactase is an enzyme specific for the degradation of lactose into two sugar monosaccharides, glucose and galactose.
The theory behind the diauxic growth curve stems from Jacques Monod's Ph.D. research in 1940. A simple example involves the bacterium Escherichia coli (E. coli), the best understood bacterium. The bacterium is grown on a growth media containing two types of sugars, one of which is easier to metabolize than the other (for example glucose and ...