Search results
Results from the WOW.Com Content Network
In biology, a substrate is the surface on which an organism (such as a plant, fungus, or animal) lives.A substrate can include biotic or abiotic materials and animals. For example, encrusting algae that lives on a rock (its substrate) can be itself a substrate for an animal that lives on top of the algae.
Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule. Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site , and residues that catalyse a reaction of that substrate, the catalytic site .
In molecular biology, substrate presentation is a biological process that activates a protein. The protein is sequestered away from its substrate and then activated by release and exposure to its substrate. [1] [2] A substrate is typically the substance on which an enzyme acts but can also be a protein surface to which a ligand binds. In the ...
Gene–environment interaction (or genotype–environment interaction or G×E) is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. [1]
Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. [ 1 ] [ 2 ] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
Each active site creates a ‘tunnel’ which is the site of three distinct substrate binding sites: nucleotide, ammonium ion, and amino acid. [4] [6] [10] [11] ATP binds to the top of the bifunnel that opens to the external surface of GS. [4] Glutamate binds at the bottom of the active site. [7]
The split gene theory is a theory of the origin of introns, long non-coding sequences in eukaryotic genes between the exons. [1] [2] [3] The theory holds that the randomness of primordial DNA sequences would only permit small (< 600bp) open reading frames (ORFs), and that important intron structures and regulatory sequences are derived from stop codons.