enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation (or congruence) (). If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. [1]

  3. Hexomino - Wikipedia

    en.wikipedia.org/wiki/Hexomino

    All 11 unfoldings of the cube. A polyhedral net for the cube is necessarily a hexomino, with 11 hexominoes (shown at right) actually being nets. They appear on the right, again coloured according to their symmetry groups. A polyhedral net for the cube cannot contain the O-tetromino, nor the I-pentomino, the U-pentomino, or the V-pentomino.

  4. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Eleven nets for the cube are shown here. [32] In analytic geometry, a cube may be constructed using the Cartesian coordinate systems. For a cube centered at the origin, with edges parallel to the axes and with an edge length of 2, the Cartesian coordinates of the vertices are (,,), a unit cube. [33]

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  6. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8.

  7. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  8. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [22] the largest number now known not to be a sum of ...

  9. Unit cube - Wikipedia

    en.wikipedia.org/wiki/Unit_cube

    Sometimes the term "unit cube" refers in specific to the set [0, 1] n of all n-tuples of numbers in the interval [0, 1]. [1] The length of the longest diagonal of a unit hypercube of n dimensions is , the square root of n and the (Euclidean) length of the vector (1,1,1,....1,1) in n-dimensional space. [2]