Search results
Results from the WOW.Com Content Network
The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. [1]
During the replication process, the DNA replication enzymes are not able to copy the ending sequences at the telomere. Those sequences, located at the end of the telomere and chromosome, would hence get lost gradually. Once all of these sequences have been worn out, the useful genetic information in the cell's chromosome would also get lost.
In eukaryotes, the cell cycle consists of four main stages: G 1, during which a cell is metabolically active and continuously grows; S phase, during which DNA replication takes place; G 2, during which cell growth continues and the cell synthesizes various proteins in preparation for division; and the M phase, during which the duplicated ...
Steps of the cell cycle. The G 2-M checkpoint occurs between the G 2 and M phases. G2-M arrest. The G 2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired.
Steps of the cell cycle. The restriction point occurs between the G 1 and S phases of interphase.. The restriction point (R), also known as the Start or G 1 /S checkpoint, is a cell cycle checkpoint in the G 1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular signals are no longer required to stimulate proliferation. [1]
Three types of cell division: binary fission (taking place in prokaryotes), mitosis and meiosis (taking place in eukaryotes).. When cells are ready to divide, because cell size is big enough or because they receive the appropriate stimulus, [20] they activate the mechanism to enter into the cell cycle, and they duplicate most organelles during S (synthesis) phase, including their centrosome.
Contact inhibition is a regulatory mechanism that functions to keep cells growing into a layer one cell thick (a monolayer). If a cell has plenty of available substrate space, it replicates rapidly and moves freely. This process continues until the cells occupy the entire substratum. At this point, normal cells will stop replicating.
Figure 1: Schematic of the cell cycle. outer ring: I = Interphase, M = Mitosis; inner ring: M = Mitosis, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis; not in ring: G 0 = Gap 0/Resting. Replication timing refers to the order in which segments of DNA along the length of a chromosome are duplicated.