Search results
Results from the WOW.Com Content Network
Although matlab can perform sparse matrix operations, numpy alone cannot perform such operations and requires the use of the scipy.sparse library. Internally, both MATLAB and NumPy rely on BLAS and LAPACK for efficient linear algebra computations. Python bindings of the widely used computer vision library OpenCV utilize NumPy arrays to store ...
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
Numerical linear algebra library with long history librsb: Michele Martone C, Fortran, M4 2011 1.2.0 / 09.2016 Free GPL: High-performance multi-threaded primitives for large sparse matrices. Support operations for iterative solvers: multiplication, triangular solve, scaling, matrix I/O, matrix rendering.
The library routines would also be better than average implementations; matrix algorithms, for example, might use full pivoting to get better numerical accuracy. The library routines would also have more efficient routines. For example, a library may include a program to solve a matrix that is upper triangular.
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
In C++ several linear algebra libraries exploit the language's ability to overload operators. In some cases a very terse abstraction in those languages is explicitly influenced by the array programming paradigm, as the NumPy extension library to Python, Armadillo and Blitz++ libraries do. [11] [12]
Every step of the k-loop takes one matrix-vector product and approximately 4mk floating point operations. In the programming language Python with support of the NumPy library: import numpy as np def arnoldi_iteration ( A , b , n : int ): """Compute a basis of the (n + 1)-Krylov subspace of the matrix A.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: