enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    Cartesian product of the sets {x,y,z} and {1,2,3}In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1]

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time.

  5. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    If A and B are sets, then the Cartesian product (or simply product) is defined to be: A × B = {(a,b) | a ∈ A and b ∈ B}. That is, A × B is the set of all ordered pairs whose first coordinate is an element of A and whose second coordinate is an element of B.

  6. Ordered pair - Wikipedia

    en.wikipedia.org/wiki/Ordered_pair

    The set of all ordered pairs whose first entry is in some set A and whose second entry is in some set B is called the Cartesian product of A and B, and written A × B. A binary relation between sets A and B is a subset of A × B. The (a, b) notation may be used for other purposes, most notably as denoting open intervals on the real number line ...

  7. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    The Cartesian product of any family of nonempty sets is nonempty. In other words, every family of nonempty sets has a choice function (i.e. a function which maps each of the nonempty sets to one of its elements). König's theorem: Colloquially, the sum of a sequence of cardinals is strictly less than the product of a sequence of larger ...

  8. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    6 Cartesian products ⨯ of finitely many sets Toggle Cartesian products ⨯ of finitely many sets subsection 6.1 Binary ⨯ distributes over ⋃ and ⋂ and \ and ∆

  9. Ternary relation - Wikipedia

    en.wikipedia.org/wiki/Ternary_relation

    Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs , i.e. a subset of the Cartesian product A × B of some sets A and B , so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A , B and C .