Search results
Results from the WOW.Com Content Network
TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators . [ 73 ] It is also included in scientific programming libraries such as the Python mathematical functions module [ 74 ] and the Boost C++ library . [ 75 ]
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Here is a sample program that computes the factorial of an integer number from 2 to 69 (ignoring the calculator's built-in factorial/gamma function). There are two versions of the example: one for algebraic mode and one for RPN mode. The RPN version is significantly shorter. Algebraic version:
Here is a sample program that computes the factorial of an integer number from 2 to 69. For 5!, if "5 A" is pressed, it gives the result, 120. Unlike the SR-52, the TI-58 and TI-59 do not have the factorial function built-in, but do support it through the software module which was delivered with the calculator.
The programming model employed was key stroke programming by which each key pressed was recorded and later played back. On record multiple key presses were merged into a single programming step. There were only a very few operations which needed two bytes. [1] The FX-603P could store 6,144 steps. Data could be stored in 110 memory register.
The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!
The memory of the FX-602P could be partitioned between from 32 to 512 fully merged steps and data could be stored in 22 to 88 memory register. The default set-up was 22 register and 512 steps. From there one could trade 8 steps for one additional register or 80 steps for 11 register with the 11th register begin a so-called "F" register.
An alternative version uses the fact that the Poisson distribution converges to a normal distribution by the Central Limit Theorem. [5]Since the Poisson distribution with parameter converges to a normal distribution with mean and variance , their density functions will be approximately the same: